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ABSTRACT

Speech-driven lip sync has become a promising technique
for generating and editing talking-head videos. These stud-
ies mainly use 3D morphable models or 2D facial landmarks
as the intermediate face representations. However, 2D-based
methods have been stagnant recently due to their inability to
handle out-of-plane rotations, even though the 2D landmarks
have the advantage of fast and accurate extraction. In this pa-
per, we design a cascaded temporal convolutional network to
successively generate mouth shapes and corresponding jaw-
lines based on audio signals and template headposes. Instead
of explicitly calibrating the rotation between the predicted
mouth and the template face, we employ neural networks to
learn the pose-adaptive mapping implicitly. We also propose
an image-to-image translation-based neural rendering method
for producing high-resolution and photo-realistic videos. Ex-
periments show our solution improves both the mapping ac-
curacy and visual performance than baselines. This work
could benefit many real-world applications like virtual an-
chors, telepresence, and conversational agents.

Index Terms— Lip sync, temporal convolutional net-
work, speech process, virtual anchor

1. INTRODUCTION

Speech-driven lip sync works on synthesizing the video of
the mouth area and then incorporating it into a head template
from other stock footage [1]. The common two-step strat-
egy is first to generate mouth representations from speech
content and then synthesize photorealistic appearance [2, 3].
Early studies handle this task using Hidden Markov Mod-
els and computer graphics-based rendering techniques [4, 5],
which yield compelling results but have the disadvantages of
low efficiency. Recent advances in deep learning first boost
lip-sync research at the audio-to-mouth stage. RNN-based
architectures [3, 6] facilitates the learning of the sequential
mapping from audio signals to mouth movements. In the
rendering stage, ObamaNet [2] is a representative work that
demonstrates the power of neural networks [7] in synthesizing
the photorealistic appearance. These methods [8, 6] provide
a fully-trainable solution for the classical two-stage lip-sync

scheme, which significantly improves both the lip-sync accu-
racy and processing efficiency.

Current neural lip-sync methods mainly use the parame-
ter space, rather than the full pixels, as the target space for
learning the audio-to-mouth mapping [9]. The main options
are 2D Facial Landmarks (2DFLs) and 3D Morphable Models
(3DMMs). 3DMMs have the strength of controllable param-
eters and free rotation [8, 6]. However, they usually [10, 11]
require landmarks for registration, and their parametric na-
ture leads to a weakening of personal talking style. 2DFLs
has the advantage of fast and accurate extraction, which also
represent the most original facial shapes. But the inability
to calibrate out-of-plane rotation is its inherent flaw. This
shortcoming significantly affects lip-sync accuracy when fac-
ing the target person with rich head motions.

To tackle the above issue, we use the template infor-
mation to facilitate the mouth generation. In this paper,
we design a cascaded temporal convolutional network to
learn the pose-adaptive mapping from audio signals to mouth
movements. This seq-to-seq model successively generates
the mouth shape and corresponding jawline, from the input
combining audio signals, target headposes, and target cheek
keypoints. Instead of explicitly removing and recovering the
rotation, we predict the pose-adaptive landmarks that match
the head movement in template videos. The corresponding
jawline is generated to assist the rendering module in pro-
ducing the accurate mouth texture. In cooperation with the
mouth generation network, we further propose a neural ren-
dering method to produce photorealistic appearances. We
also conduct a comprehensive evaluation of the proposed
method and baseline methods.

2. PROPOSED METHOD

The proposed method takes a piece of speech and template
footage as input and outputs a synthesized video (Fig. 1). It
can be interpreted in the following two stages:

Stage 1: from audio to pose-adaptive landmarks. We
train a cascade neural network to learn the seq-to-seq map-
ping from audio features to 29 talking-related facial land-
marks. The headpose from template frame is used as the con-
ditional information in mapping network.
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Fig. 1. Flowchart of the proposed lip-sync method. We predict the pose-adaptive landmarks in the first stage and then render
the synthetic facial maps to high-resolution photo-realistic videos in the second stage.

stage 2: from landmarks to videos. We render the gen-
erated landmarks into final videos via a tailored neural ren-
dering method. We first incorporate the generated landmarks
into the face template in each target frame. The synthesized
facial maps then go through the rendering network and turn
into high-resolution photo-realistic video frames.

2.1. Audio to Pose-Adaptive Landmarks

In this stage, we translate the speech content into the talking-
related landmarks via a cascaded Temporal Convolutional
Network (TCN), as shown in Fig. 2. The main components
are three-fold:

Pose-adaptive landmarks: Recent 2D-based methods
[2, 1] employ facial landmarks to represent mouth move-
ments. Their fatal drawback is the inability to completely
handle the head rotations. ObamaNet [2] removes the in-
plane rotation but fails to handle the out-of-plane rotation.
The consequence is that the generated mouth is always facing
the front even though the target head has big rotations (see
Fig. 4(a)). Our solution is to implicitly predict the land-
marks that conform to the template head posture. As shown
in Fig. 2, along with the audio input, we import the template
headposes to the mapping network twice for learning the
pose-adaptive mouth shape and jawline.

TCN block: RNN-based models are widely used in lip-
sync studies [12, 6]. But a recent report [13] shows that
TCN outperforms generic RNN in various tasks. Compared
to RNN, TCN has the advantages of large sequential percep-
tive field, stable gradients, and low memory requirements. To
bring such strengths into the lip-sync scenario, we employ
TCN blocks as the main component of the mapping network.
Within the TCN block, the non-causal structure covers both
future and past information, similar to the time-delay LSTM
[1] and Bi-directional LSTM [6]. This setting meets the re-
port that the mouth movement is not only determined by the
past but also the future sounds [1]. Besides, the dilated con-
volution [14] provides an exponentially large reception field
while preserving stable and fast gradient calculations. Both

TCN blocks have the dilation factor of [1,2,4,8], and kernel
size equals 3.

Cascaded structure: Jaw movement is closely related to
mouth shape [15], but it is inherently difficult to reconstruct
the jawline in 2D landmarks. To this end, we design a cas-
caded structure to successively generate the mouth shape and
corresponding jawline, as shown in Fig. 2. The first-phase
network G1 takes as input the audio features (ai ∈ R256×26)
and the target headpose (pi ∈ R64×3). It produces an inter-
mediate output G1(ai,pi) which is compared with the PCA
mouth features (mi ∈ R64×13). The inputs of the second-
phase networkG2 consist of the first-phase outputG1(ai,pi),
the target headpose pi, and the cheek keypoints (fi ∈ R64×16)
in the target frame. The cheek contains eight facial land-
marks, which are important for locating the generated mouth
shape and blending the jawline into the template face. The
G2 finally outputs 29 talking-related landmarks (ti ∈ R64×58

), including 20 mouth keypoints and 9 jaw keypoints. In
summary, we first generate the main mouth features with G1

and then use G2 to produce final pose-adaptive landmarks of
mouth and jawline. The two networks are training together
under the following loss.

We designed a composite loss function to cooperate with
the above structure. The whole cascaded network is defined
as G , and the training data pair is {(ai,pi,mi, fi, ti)}Fi=1.
We first employ the L2 regression loss to measures the first-
phase mapping accuracy of the main mouth features:

Lpca = ‖mi −G1(ai,pi)‖2F (1)

Then the same L2 loss is used on the final output 29
talking-related landmarks:

LL2 = ‖ti −G2(G1(ai,pi),pi, fi)‖2F (2)

We also use a pairwise inter-frame loss improve the tem-
poral stability in final generated landmarks. The the L2 dis-
tance between the differences of consecutive frames is calcu-
lated as:

Lint =
∥∥(ti − ti−1)−

(
G2i −G2i−1

)∥∥2
F

(3)
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Fig. 2. Architecture of the cascaded temporal convolutional network for learning the audio-to-landmarks mapping. We import
the headpose in both Phase 1 and Phase 2 to predict the pose-adaptive talking-related landmarks.

The final loss function (λ1 = 0.05, λ2 = 0.6 ) can be
formed as:

Lall = LL2 + λ1Lpca + λ2Lint (4)

2.2. Neural Rendering

We further propose a neural rendering strategy for produc-
ing a high-resolution and photoreal appearance. To avoid the
mismatch between the generated mouth and the template face
(see in Fig. 3(a)), we design a synthetic facial map for gen-
erating facial texture at the full-face level. We first recover
the generated talking-related landmarks in the template face.
Then we augment the composite landmarks with Canny edges
extracted from the template frame. The edge information fa-
cilitates the rendering model to produce accurate and contin-
uous details. Figure 3(c) shows the same mouth with differ-
ent jawlines result in different rendered results, which con-
firm the necessity of accurate jawlines. We further build the
rendering model by augmenting hierarchical image-to-image
translation model pix2pixHD [16] with self-attention blocks.
In subsequent experiments, we successfully rendered a 720×
720 resolution head images based on the facial maps.

3. EXPERIMENTS

3.1. Dataset and pre-processing

The experiments were conducted on the weekly videos of ex-
President Barack Obama [2]. We process 2-hour videos for
training both the mapping and rendering networks. The reso-
lution of original videos is 1080 × 720 and we crop the face
area in 720 × 720. We extract the 68 2D-landmarks from
each frame. We calculate the relative coordinates based on
the center of the nose and do not explicitly remove any rota-
tions. The 29 normalized landmarks are predicted and then
recovered in given nose centers and face scale. As for audio,
we extract 26-D logfBank features.

3.2. Results

In cascaded TCN, we import the headpose in both phases and
the cheek information only in the second phase. We first ex-
plore the contribution of these conditional variables via abla-
tion study. Then, we compare our model with two representa-
tive RNN-based lip-sync baselines (LSTM [2] and BiLSTM
[6] ) with only mouth output. We record the MSE of pre-
dicted mouth and jawline respectively, as well as the training
time and inference time (5min audio).

Table 1 shows that headposes in both phases are helpful
to improve the mapping accuracy. Adding headpose in Phase
1 brings a greater lift than adding it alone in Phase 2, show-
ing that learning a pose-adaptive PCA mouth is the basis for
accurately generating the final talking-related landmarks. The
result also indicates that inputting the headpose again in Phase
2 is necessary to calibrate the jawline and fine-tune the mouth
shape. Besides, we find that the lack of cheek information
dramatically affects the mapping accuracy for both mouth and
jawline. We infer that the large MSE comes from the wrong
location. Therefore, cheek information is essential for both
locating the predicted mouth and connecting the jawline to
the template face. Moreover, we find a positive correlation
between training time and the increase in conditional inputs.
Compared to RNN-based baselines, all TCN-based models
have a significant advantage of time consumption, especially
for inference time.

Fig. 4 shows the impact of headpose and cheek informa-
tion on generating landmarks and final rendered results. In
Figure 4(a), the middle row generates the pose-independent
mouth shape. We find that the generated mouth is obviously
wrong when encountering such a big out-of-plane head rota-
tion, and the rendering result is also affected. Fig. 4(b) shows
the problem caused by generating jawlines without cheek in-
formation. Although the rendered model has some corrective
power, the jaw position is still clearly wrong in the rendering
result. Fig. 5 shows the final rendered results of our lip-sync
methods. The generated mouths movements are consistent
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Fig. 3. (a) The inpainting strategy used in ObamaNet. (b) The full-face generation used in our method. (c) The different
rendered results from the same mouth with different jawlines.

Table 1. Ablation study on the headpose, cheek used in the mapping network, and the comparison to baseline models.
No pose G1 pose G2 pose Ours No cheek LSTM BiLSTM

Mouth (10−6)
4.095 ±

0.086
3.882 ±

0.047
4.004 ±

0.027
3.628 ±

0.058
69.71 ±

0.426
12.94 ±

0.278
12.93 ±

0.343

Jawline (10−6)
2.955 ±

0.051
2.778 ±

0.031
2.939±
0.017

2.723 ±
0.037

116.5 ±
0.283 – –

Train (m) 58.86 ±
7.26

73.54 ±
4.08

64.92 ±
8.86

82.57 ±
10.87

21.12 ±
0.73

131.6 ±
23.8

169.3 ±
26.5

Infer (s) 0.043 ±
0.004

0.045 ±
0.003

0.044 ±
0.004

0.043 ±
0.004

0.043 ±
0.002

7.043 ±
0.338

12.44 ±
0.214
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Fig. 4. Typical results of missing headpose (a), cheek infor-
mation (b) at the audio-to-landmarks mapping stage.

with the audio source, while fitting well with the headpose
and skin texture of template frames.

4. CONCLUSION

We present a neural-based framework for learning high-
fidelity and pose-adaptive lip sync from speech. We hope
our solution will make it possible to bring such methods into
real-world applications.

Fig. 5. Final results of the proposed lip-sync method. The first
row shows the reference frames from the audio-source video.
The second row shows the template frames and corresponding
synthetic facial maps. The last row presents the final video
frames rendered at 720 resolution.
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